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What are we covering today?

1. Mass-spring model of loudspeaker

2. Transient and steady state analysis

3. Acoustic domain

1



A weekly fact about Salford..!

Did you know...

• Both Karl Marx and Friedrich Engels spent time in Salford, studying the plight of

the British working class. In his book ’The Condition of the Working Class in

England’ (1844), Engels described Salford as ”...a very unhealthy, dirty and

dilapidated district.” Alongside Marx, Engles co-authored The Communist

Manifesto, which has sold over 500 million copies, making it one of the four

best-selling books of all time.
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Mass-spring model of loudspeaker



Impedance analogy: mass-spring-damper

• We have been considering the

mass-spring-damper system - why?

• Impedance analogy:

F → V u → I (1)

• Mobility analogy:

F → I u → V (2)

M [kg]

C [m/N] R [Ns/m]

F

u

u = 0

Figure 1: Mass-spring-damper.
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Equivalent circuits: impedance vs. mobility

• Impedance:

F → V u → I (3)

• Mobility:

F → I u → V (4)

F

u RM CM

MM u

F

MM1/RM CM

Figure 2: Equivalent circuits: impedance vs. mobility 4



Loudspeaker diaphragm: free body diagram

Ext. force, Fext
Diaphragm mass, M

Resistive force, FR

Elastic force, Fk

Velocity, u

Figure 3: Loudspeaker free body diagram

• How can we model a loudspeaker

diaphragm? First consider a force

balance.

• According to lumped parameter
assumptions:

- loudspeaker diaphragm as a single

mass element

- spider and surround as a lumped

spring with a viscous damper

• So it turns out our mass on a spring

model actually describes the dynamics

of a loudspeaker diaphragm!
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Loudspeaker diaphragm: free body diagram

Ext. force, Fext
Diaphragm mass, M

Resistive force, FR

Elastic force, Fk

Velocity, u

Figure 3: Loudspeaker free body diagram
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u

u = 0

Figure 4: Mass-spring-damper.
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Loudspeaker diaphragm: free body diagram

• We can model a loudspeaker driver as an equivalent circuit.

Ext. force, Fext
Diaphragm mass, M

Resistive force, FR

Elastic force, Fk

Velocity, u

Figure 3: Loudspeaker free body diagram

F

u RM CM

MM

Figure 5: Equivalent impedance circuit

• Still need to consider the acoustic and

electromagnetic domains... 7



Transient and steady state analysis



Mass-spring-damper: equation of motion

• We have analysed the dynamics of a

mass-spring-damper system using an

equivalent circuit approach

• Now we will consider a more conventional

approach based on laws of classical

mechanics

• Newton’s 2nd Law:∑
i

Fi = Ma = M
d2x

dt2
(5)

M [kg]

C [m/N] R [Ns/m]

F

u

u = 0

Figure 6: Mass-spring-damper.

−kx−R
dx

dt
+ Fext = M

d2x

dt2
→ Fext = kx+R

dx

dt
+M

d2x

dt2
(6)
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Equation of motion: general and homogenous form

Fext = kx+R
dx

dt
+M

d2x

dt2︸ ︷︷ ︸
General form

0 = kx+R
dx

dt
+M

d2x

dt2︸ ︷︷ ︸
Homogenous form

(7)

• The general solution is made up of a complementary function plus the

particular integral:

x =

Steady-state solution︷︸︸︷
xp + xcf︸︷︷︸

Transient solution

(8)

• The transient solution found from homogenous form where F = 0.

• The steady state solution is found directly from general form.

• Great video on solving 2nd order differential equations: click this link!
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https://www.khanacademy.org/math/differential-equations/second-order-differential-equations/linear-homogeneous-2nd-order/v/2nd-order-linear-homogeneous-differential-equations-1


Equation of motion: transient solution

Fext = kx+R
dx

dt
+M

d2x

dt2︸ ︷︷ ︸
General form

0 = kx+R
dx

dt
+M

d2x

dt2︸ ︷︷ ︸
Homogenous form

(9)

On the board...
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Equation of motion: transient solution

11



Equation of motion: transient solution
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Equation of motion: transient solution
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Equation of motion: transient solution
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Equation of motion: transient solution

• Our transient solution is

xcf = A1e
−R+

√
R2−4Mk
2M

t +A2e
−R−

√
R2−4Mk
2M

t (10)

• Factor out common exponential

xcf = e−
R
2M

t︸ ︷︷ ︸
Decay

Potential oscillation︷ ︸︸ ︷[
A1e

√
R2−4Mk

2M
t +A2e

−
√

R2−4Mk
2M

t

]
(11)

• Three conditions:

- 4Mk < R2 Square root is positive - real roots - no oscillation (over damped)

- 4Mk = R2 Square root is 0 - decay term only - no oscillation (critically damped)

- 4Mk > R2 Square root is negative - complex roots – oscillation (under damped)

- Recalling Q =
√
Mk/R the above are equivalent to: Q > 1/2, Q = 1/2 and Q < 1/2
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Q factor vs. oscillation

xcf = e−
R
2M

t

[
A1e

√
R2−4Mk

2M
t +A2e

−
√

R2−4Mk
2M

t

]
(12)
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Figure 7: Over, under and critically damped oscillation - x(0) = 1 and ẋ(0) = 0 16



Q factor vs. peakyness

u =
F

R+ jωm+ k
jω

=
F

√
mk
Q + jωm+ ω2

cm
jω

=
F

√
mk
Q + jωm

(
1− ω2

c
ω2

) (13)
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Figure 8: Frequency response of over, under and critically damped mass-spring-damper. 17



Equation of motion: steady-state solution

Fext = kx+R
dx

dt
+M

d2x

dt2︸ ︷︷ ︸
General form

0 = kx+R
dx

dt
+M

d2x

dt2︸ ︷︷ ︸
Homogenous form

(14)

• To get the steady state solution we consider: Fext = F0e
jωt

• Linear equation, so response will also be periodic: xp = x0e
jωt

F0e
jωt =

(
(jω)2M + jωR+ k

)
x0e

jωt (15)

• Steady state solution given by:

xp =
F0e

jωt

(jω)2M + jωR+ k
=

F0e
jωt

jω

(
R+ j

[
ωM − k

ω

])
︸ ︷︷ ︸

Impedance Z

(16)
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Equation of motion: complete solution

• The general solution is the complementary function plus the particular integral:

x(t) = xp + xcf (17)

x(t) =
F0e

jωt

jω
(
R+ j

[
ωM − k

ω

]) + e−
R
2M

t

[
A1e

√
R2−4Mk

2M
t +A2e

−
√

R2−4Mk
2M

t

]
(18)

• As t → ∞ the transient part of the solution tends to zero.

• We will focus on the steady state part.
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Acoustic domain



Acoustic impedance

• Have already covered electrical and mechanical impedance...

• Electrical impedance (opposition to flow of current)

ZE =
V

I
(19)

• Mechanical impedance (opposition to mechanical motion)

ZM =
F

u
(20)

• Acoustic impedance is more awkward - there are three different types...
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Acoustic impedance: three types

• Acoustic impedance describes the opposition to motion or flow of air. Acoustic

impedance relates the acoustic pressure at a surface to the velocity.

• Specific acoustic impedance

zA =
p

u
u is the particle velocity (21)

• Acoustic impedance

ZA =
p

U
U is the volume velocity (22)

• Radiation impedance

ZAr = SzA S is vibrating surface area (23)
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Acoustic impedance: volume velocity

• The volume velocity is the product of the

component of particle velocity u normal to a

vibrating surface and the differential surface area:

dU = n̂ · udS (24)

• For a uniformly vibrating surface area S we have

U = uS (25)

• Has units of [m3/s] hence the name volume velocity

• Volume velocity is a scalar (not a vector like

particle velocity)

uS

Figure 9: Volume velocity of a

rigid piston.
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Acoustic impedance: relation to mechanical impedance

• Acoustic impedance

ZA =
p

U
U is the volume velocity (26)

• Mechanical impedance

ZM =
F

u
u is the surface velocity (27)

• Recalling that p = F/S and U = uS

ZA =
p

uS
=

F/S

uS
=

F

uS2
=

ZM

S2
(28)

• Acoustic and mechanical impedance are related by factor of 1/S2
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Next week...

• Acoustic domain - basic elements and equivalent circuits

• Transducers (electro-mechanical, mechano-acoustical)

• Ideal transformers

• Reading:

- Acoustic domain: lecture notes, chp. 4 (all)

- Coupling domains: lecture notes, sec. 6.1-6.5 (all)
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